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-&ls2”=-q+.$~np_ 1 -4 ) v. -?-2.L 
cos y 4 a 

v = o/o, dldt = alat + v.V 

In the theory of a non-steady thin compressed layer the generalized projection of the 
vorticity on the direction of velocity is constant along the trajectories only in the case 
of flow past a thin wing of small aspect ratio, unlike the stationary case /9/. 
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COMPATIBILITY EQUATIONS, STRESS FUNCTIONS, AND VARIATIONAL PRINCIPLES 
IN THE THEORY OF PRESTRESSED SHELLS* 

L.M. ZUBOV 

General statements of the theory of small deformations of thin shells 
with initial stresses are considered /l/. Compatibility equations are 
derived for the kinematic quantities, functions are found that satisfy 
the equilibrium equations identically, different variational principles 
of statics are formulated and proved, and distortion boundary conditions 
are obtained. The presence of initial stresses induces substantial 
singularitiesinto these sectionsofthetheory as compared with the linear 
theory of unstressed shells /2-S/. These singularities are due to the 
fact that the specific potential energy in the theory of small defomlations 
of elastic shells with initial stresses depends not only on the tensors 
governing the change in metric and curvature of the surface, but also the 
rotation vector /l/. 

The results obtained can be applied in shell stability problems as 
well as in the analysis of large shell deformations by the method of 
successive loadings when a linear problem of small deformations measured 

*Prikl.Matem.!fekban.,49,1,120-129,1985 



89 

from the state of stress corresponding to the previous step is solved in 
each step of the calculation process. 

1. The system of equations describing small deformations of thin elastic shells when 
there are initial stresses consists /l/ of the equilibrium equation for the force quantities 

V.IH -M-B + G. (V.M)N]+E +V. (pN)=O (1.1) 

H=K+ -&ye+LN (h.N=O) 

governing the relationships connecting the force and kinematic quantities 

(1.2) 

M = --adax, a = a (E, )c, 8, x) 

and the formulas expressing the kinematic quantities in terms of the displacement vector field 

W of the middle surface of the shell 

F = VW =E + xe +6N, 6 =N*FT ==Vw+B.u (1.3) 

s=+ [(Vu).G+G.(Vu)~]-Be, +N.(V xu) 

x=x'=(V6).G1_B.FT=~[(Pw).e-e.(Vo)r]~ 

+(e.B +Bae), 0=19rN-+~N, G=E-NN 

e= -eT = -G x N, B = -VN, u = w.G, IU =w*N 

The N in (l.l)-(1.3) is the unit vector normal to the middle surface 0 of the shell, G 
and B are the first and second fundamental surface tensors, e is the discriminant tensor, E 
is the unit tensor, V is the nabla operator on the surface, e is the linear surface strain 
tensor, x is the tensor of curvature variation, 0 is the linear vector of surface rotation, 
a is the specific potential energy of a prestressed shell (per unit middle surface area), 
and f and ~1 x N (p.N =O) are the intensities of the additional force and moment loads 
distributed over the surface 0. The vector fields f end f* are considered given, i.e., are 
independent of the displacement vector w and its derivatives. 

In the case of small initial strain and a membrane initial state of stress, the governing 
relationships are written as follows /I/: 

K = e& I(1 - v) E -+vGtrs]+Gx(S.$e-eeS) (1.4) 

M = - ,2(f~vai [(I-v)xi-vGtrx)r h-S.6 

1’ = 2 tr S + tl (S*e.s) 

a= ~~tf+-2(l-v)dete];- '@ 24(l-+) x 

Here E is Young's modulus, v 
the tensor of the initial forces. 
are presented in /l/. 

The force boundary conditions 
follows: 

m.[H 

is Poisson's ratio, h is the shell thickness, end S is 
The governing relationships for an arbitrary initial state 

obtained in /l/ on the shell contour can be written as 

L (0.M) N -M.B17. +(&,N)= (1.5) 

I-+ -&((d,N)-(m.y)X, M,,=c&, 

(d = d,m + &t, rn. 1\1= Minmm + M,,t) 

where m, t are unit vectors of the normal and tangent to the contour r(m-N = O), s is the 
running length of the arc of the contour, 1 is the intensity of the external load distributed 
over the contour d ;< N (d.N - 0) is the intensity of the moment distributed over the boundary 
curve. 

The geometric boundary conditions consist of specifying the displacement vector w and 
the components of the angle of rotation Qm= m-6 on r. 

2. If Cl.31 is substituted into (l-2), and then into (1.1) , a system of three equations 
is obtained in the three displacement vector components. In addition to this, the force 
quantities H.M can be taken as fundamental unknowns. The compatibility equations imposed 
on the kinematic quantities F,x and representing the result of eliminating the displacements 
from the relationships (1.3) willbe theequations to define them along with the equilibrium 
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equations (1.1). The gOveYXling relationships (1.2) should here be inverted, i.e., the kinematic 
quantities should be expressed in terms of the force quantities. 

The necessary and sufficient condition that the tensor field F -G-F be the gradient 
of a certain vector field w on the surface is the equation /6, 7/ 

The relationship 

V. (e.F) = 0 (2.1) 

results from (1.3). 

x - [V (N.F*)I.G - B.FT = 0 (2.2) 

Equations (2.1) and (2.2) are equivalent to six scalar relationships for the nine com- 
ponents of the tensors F and x, and are the compatibility equations for the kinematic quan- 
tities.Whentheyare satisfied, the displacement vector is determined by the quadrature 

w = i dR.F 

where R is the radius-vector of a surface point. In a simply-connected domain it is sufficient 
to give the displacement of some point of the surface for a single-valued determination of 
Jv. In the case of a domain not simply-connected (a shell with holes) the vector w is not 
generally single-valued. If slits transforming the shell surface into a simply-connected 
domain are made, then the vector w can undergo a discontinuity of the first kind on inter- 
secting the slits, where the magnitude of the jump in the vector is identical at all points 
of each of the slits. 

Since the number of compatibility equations does not agree with the number of equilibrium 
equations, the static-geometric analogy does not generally hold in the theory of prestressed 
shells. This analogy is valid in the special case of membrane shell theory with initial 
stresses (in the case it is necessary to set M = 0 and to eliminate the tensor x from 
consideration) and is a consequence of the analogy noted in /6/. 

The geometric boundary conditions on the part rl of the shell edge w=w*, e,,,=eifm*, 
where the asterisk denotes given functions of the coordinate s, can be replaced by conditions 
on the boundary values of the tensor. F. Since t.F = 8wih’s on rl, we have 

t.F = aw*/as, m.F.N = fh,* (2.3) 

Since the tensor-gradient of the displacement vector is often called the distortion 
tensor (see /8/, say), the boundary conditions (2.3) can be called distortion conditions. 

The distortion conditions were obtained /5/ as an intermediate result in deriving the 
strain conditions. The distortion conditions are not utilized in the linear theory of shells 
without initial stresses. The role of the strain conditions is taken over by the distortion 
conditions in the theory of prestressed shells. 

If the curve rl consists of a simply-connected section, then the geometric boundary 
conditions are restored by the distortion conditions apart from an arbitrary constant vector 
by quadratures. Since arbitrary translation (translational displacement) of a shell is not 
essential in an equilibrium problem, in the case of a connected curve I'1 the geometric and 
distortion conditions can be considered to be equivalent. If r1 consists of separate 

disconnected sections, the distortion boundary conditions are not sufficient to restore the 
geometric conditions (and therefore, to formulate the boundary value problem also). It is 
still required to give relations governing the mutual translational displacement of the 
separate sections of the curve I‘,. 

3. Starting from the identity /I/ that is valid for an arbitrary twice differentiable 

vector field a 

N.[‘i ., (Va)l = C. (e.Va) = 0 (3.1) 

it can be seen that the general solution of the equilibrium equations (1.1) can be represented 

in the form 

H = e.V@ + Y*B - G.(t.Y)N+H’, M=Y +M’ (3.2) 

where Q, is an arbitrary twice-differentiable vector field, and up is an arbitrary twice- 

differentiable symmetric tensor satisfying the condition N.y = 0. The prime in (3.2) denotes 

a certain particular solution of (1.1) corresponding to the surface loads f, p. We call the 

components Cp and \y stress functions. Relations (3.2) express nine scalar force quantities, 
the components of the tensors Hand M , in terms of six stress functions: the equilibrium 
equations are here satisfied identically. 

The force boundary conditions (1.5) are written as follows in terms of the stress 

functions 
a@ J. 2 ($,,,N) + L’ 4 + & (d,N) - (m.p) N irs as (3.3) 
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4. We introduce a specific additional energy A into the considerations, as a function 
of the static quantities H,M related by a Legendre transformation to the specificpotential 
energy a. By the property of the Legendre transformation we have 

(4.1) 

x = --ad/r%%, A = A (H, M)1 

For the case of a low initial strain and a membrane initial state of stress the function 
A is calculated from (1.4) and has the form 

2A = Eh [(I + v) tr @ - vt$K] +~[(l+v)trM*--tr*M]i_h.u.h+ 

Eh tr%/-+(1+v)tr’%- 
F. 

(I+ v)trSz2j-'[~-(2 fv) tr(iQe9*e)lB 

g=,~zx, S=EhS, y=“Ehjj, o.S=G, N.a=o.N=O 

Here (J is a two-dimensional tensor inverse to the initial force tensor. 

(4.2) 

5. The relationships obtained above enable us to formulate variational principles for 
the theory of prestressed shells that are analogous to the principles set down in /9/ for a 
three-dimensional elastic medium. We assume that the shell boundary consists of two parts 

rl and r,. Geometric conditions are given on r2 and force conditions on rr. We consider 
the following functionals 

(5.1) 

’ ac1 1 ++-(m:; d)+d4(w)}ds 

r: 
U2 #xv, H, M j = 

SC 
[H. .$(w)-M..%(w)- 

6 
A(H, ~~)-~.~~~.~(~)]~~-J 

(5.2) 

J= jm,(H+V.(MN))-m+BM,,$ 

$(M,,N)] . (w - w*) - M,, IS,,, (w) - t$l} ds - 

U~iw, F, x, H, M] - 
ss 

(a(F, x)-H~..(F-VW)+ 
0 

(5.3) 

lM..[x-V(V~~;B.W).G-B~(VW)~]--- 

f.w+p.6(w)}d.s-J 

The functional u, is defined on a set of fairly smooth displacement fields satisfying 
geometric conditions on rl. The displacement fields and force quantities not subjected to 
any bundary conditions vary independently in the functional (5.2). The variable functions 
in the functional (5.3) are the displacements, and the kinematic and force quantities which 
are also not'connected by additional conditions. The equilibrium equations in displacements 
and the force boundary conditions result form the stationarity of the functional U,. The 
equilibrium equations (1.11, relations (4.11, and the geometric and force conditions result 
from the condition su,=o. The requirement Ml, = 0 is equivlaent to Eqs.(l.l), relations 
(1.2) and (1.3), and also the force and geometric boundary conditions. 

The variational theorems with the functionals (5.1)-(5.3) are analogous to the Lagrange, 
Reissner, and Hu-Washizu conditions in the theory of elasticity /lo/. It is easy to present 
a formulation of these principles (we shall not do this here) even for different cases of 
combined boundary conditions: a hinged support, a moving hinge, a sliding frame, etc. 

The formulation of the above-mentioned variational principles can be extended to the 
case of a follower pressure of intensity p, distributed uniformly over the surface 0. If 
the conservation conditions for a hydrostatic load set up in /I/ are satisfied, it is 
sufficient to append the potential for this load /l/ to the expressions for the functionals 
(5.1)-(5.3) 



92 

n=$, &t?.“-wtIrs)dO 
0 

Expressing the force quantities according to (3.2) in terms of the stress functions, 
we consider the following functional over the stress functions 

(5.4) 

The functional V, is defined on a set of twice-differentiable vector I& and tensor Y 
fields subjected to the boundary conditions (3.3) on r2. Note that the value of the functional 
V, does not change if CD is replaced by Q, + c, where c is an arbitrary constant vector. 

We will show that the stationarity condition for the functional V, is equivalent to 
the compatibility equations (2.1) and (2.2) written in terms of the stress functions and the 
geometric boundary conditions on I'r. On the basis of (4.1), we write the variation of the 
functional V, after integration by parts in the form 

ss (V.e.F).GQ,+ [(B.FT+Vit-~).*@P]dO- 

0 
(5.5) 

According to (3.3) the possible variations in the stress functions on the curve rn should 
be subject to the condition 

Bias (&D + Nt$,,,t) = 0, 6&,,,, = 0 (5.6) 

Let 6V, = 0. First setting &Q = 61 = 0 on I' (this is compatible with the constraint 
(5.6)), by virtue of the fundamental lemma of the calculus of variations we arrive at the 
compatibility equations (2.1) and (2.2). These equations mean that a vector field KV exists 
whose surface gradient is F(@,Yy). In a simply-connected domain the vector w is a single- 
valued function of the coordinates on the surface defined apart from an additive vector 
constant. Taking this into account, we transform the stationarity condition of the functional 

(w~GU')f~&(w~N6&,~) ds$ 3 (5.7) 

The first integral in (5.7) is obviously zero. Since r = rl u r2, and conditions (5.6) 
hold on I',, we conclude from the arbitrariness of 6@,6Y that the conditions me (VW + 

B.w) = 6,,,*,w = w* are satisfied on r, . We note that the above-mentioned indeterminacy 
in the form of the vector constant is eliminated by this last relationship. 

If the shell surface is not simply-connected, then by transforming it into a simply- 

connected domain by making the requisite number of slits (partitions), it can be shown that 
the condition that the displacements are single-valued also results from the stationarity 
of the functional V, in the case of a multiconnected domain. 

The force boundary conditions (3.3) are an ordinary differential equation in the vector 

Q, + N&r. Since the stress vector function @Q is defined to within an arbitrary constant 
vector, if I', consists of one connected section, the force conditions can be satisfied without 

loss of generality by setting 

Q, + Nqmr = cp*,Ip,m =&-MM,,' (5.8) 

on rr where q* is a certain particular solution of the equation 

dcF ==I-- L’+&(m xd)-(m.p)N 

We set 

(5.9) 
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It can be verified that the stationarity condition for the functional V,' over the stress 
functions satisfying the condition (5.8) on r, is equivalent to the compatibility conditions 

(2.11, (2.21 and the distortion boundary conditions on rl. 
The strain boundary conditions in classical linear shell theory are derived from an 

additional energy variational principle in /ll/. 
Both the distortion conditions and the force conditions in the form (5.8) are natural 

boundary conditions for the functionals V, and V, presented below 

V,[F, x, @, Y]=~${[e~V4+Y.B-G~(V~P)N+ (5.10) 

0 

H’]~.FT-(Y+M’f~~x-a(F, x)tdO$-W 

W = 5 i G-C@ i- N%r) + &%tm] ds -I- 
rt 

’ 
J. 

[t .F.(Q, + N%,,l - co*) + 6, ($,,,-- 4, + %m)l ds 

V,[‘F, z, H, 11% Qt, Y]=Sf(A(R, M)-F'..[H-e.V@- 

Y.B+G.(V.~)N--H'j~x-.(M-Y--_))dOfW 

(5.11) 

The necessary and sufficient conditions for the functional (5.10) to be stationary are 
Eqs.(2.1), (2.21, the governing relations (1.2) in which the force quantities are expressed 
in terms of the stress functions, andthebounaary conditions (2.3) and (5.8). The requirement 
for the functional (5.11) to be stationary is equivalent to the compatibility equations, the 
relations (4.1: and (3.2), and also the distortion and force boundary conditions. 

We will present still another formulation of the Clapeyron theorem for prestressed shells 
that results from (l.l), (1.21, ana (1.5) 

-&f{[l +$(d,h')f.w-dd6)ds,$SS(f.w--.~)d0- 

t~~(H..FT--Di-.X)dO=SSnWo 
c 

6. oh e general case of an initial state of stress for a shell when inversion of the 
governing relations (1.2) is possible was considered above. Moreover, exceptional cases exist 
for which it is impossible to express all the kinematic quantities in terms of the forces, 
which results in a modification of the number of statements in the theory. The most important 
of such exmaples is a cylindrical shell (of arbitrary section) subjected to uniaxial preliminary 
tension or compression in the direction of the cylinder generators. We take the length of the 
arc of the shell trdnSVerSe section outline as the x1 coordinate on the cylinder surface, 
andthedistance measured from the cylinder axis as the x2 coordinate. The unit vectors 
tangent to the coordinate lines will be denoted by el, ez. The tensor of the initial forces 
has the form S = Te,e, in this case. Consequently, as is seen from (1.41, the specific 
potential energy a is independent of the component 6,=e,.6 of the rotation vector. There- 
fore, this component be expressed in terms of the force quantities. In compiling the system 
of equations in the force quantities by a natural path we arrive at the problem of determining 
the surface displacement vector by means of a given field of kinematic quantities 
6, = e,.4, and 

s,x, x, 
the derivation of the corresponding compatibility conditions. These conditions 

consist of five equations and have the form 

If (6.1) are satisfied, the shell displacements are determined by quadratures apart from 
an arbitrary translation and an arbitrary rotation around the ez axis. 

In finding the general solution of the equilibrium equations (1.1) it must be taken into 
account that the equation h, =e,.H.N = 0 holds in the singular case under consideration. 
This relationship imposes the following constraint on the functions cD,Y in (3.2) 

(6.2) 
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Condition (6.2) can be satisfied by setting 

where $ is an arbitrary twice-differentiable function. 
Therefore, for uniaxial prestressing the general solution of the equilibrium equations 

contains five stress functions Q, ea.@ (a = 1, 2),*,,*,, , unlike the general case. It can be 
verified that even in this case the compatibility equations (6.1) result from a variational 
principle with a functional of type VI. 

If there are no initial stresses in the shell, then the stress functions @,Y should 
be subjected to the conditions h= 0,~ = 0. By starting from this it is possible to arrive 
at the three stress functions of linear shell theory /3-S/ in terms of which the general 
solution of the three equilibrium equations for the symmetric force and moment tensors is 
expressed. 

7. As an application we consider a new energy criterion for the buckling of thin plates 
that results from the principle of complementary work. The equations K=y=iJ are satisfied 
for the bending strains of a slab and we have @.c; =O from (3.2). On the basis of (3.2), 
(4.2) and (5.9), the stability energy criterion for a slab stressed in its plane has the form 
(0 = 0.8) 

f51. = 0, v= [s{12(m-‘[(l ~v)trY~-Vtr~Y)~.(e.V.P-~.Y).a.(e.CS-~.P))dO (7.1) 
b 

The stress functions CD,,V in the functional V should satisfy the force boundary 
conditions. The geometric conditions are assumed to be homogeneous. For axisymmetric modes 
of buckling of a uniformly compressed (S= -&) circular plate we have 0, = 0, !& = 0, where 
the subscript 1 corresponds to the radial coordinate r, and the subscript 2 to the angular 
coordinate. In this case the functional (7.1) takes the form 

I‘ = ?a-’ (7.2) 
Ll 

Here a is the plate radius and g is the magnitude of the compressive force. In the 
case of a freely supported plate we take the expressions forthe bending moments occurring 
in a plate without initial stresses subjected to a uniform transverse load as the coordinate 
functions of the Ritz method: 

,I#,, = c (3 -v) (a? - r2), & = c [(3 + Y) a? - (1 + 3v) r21 (7.3) 
c = const 

From (7.1)-(7.3) we find the approximate value of the critical load for v=O.3 

12(1- v*) (Eh3)-'a*q = 4.25 

The exact value of this quantity is 4.20 /12/. 
The problem of the stability of compressed thin-walled cylindrical rods of a closed 

profile might be another example of the application of the theory presented above. For the 
rod buckling modes of a thin-walled cylinder whose transverse section is a smooth closed 
contour, the bending stiffness of the shell wall can be neglected, i.e., membrane theory can 
be considered. According to (4.2), the specific additional energy in this case takes the 
form (the unimportant constant factor is neglected) 

tI,:=e,.H.e: (z.fi=l,?) 

Here 7 is the dimensionless initial stress acting in the direction of the rod axis. 
Taking account of (3.2) and (6.2), we express the additional energy in terms of the stress 
functions @,,a2 and we apply a variational principle with the functional (5.4) to investigate 
the stability of a rod whose endfaces are under sliding clamping conditions. In this case 

we should set ( 2 is the rod length) 

@I = 'PI (z,)~in~~, %= cp2.(zz)c0sWP. n+, n=1,2,... 

Taking account of the periodicity of the functions ~,(~,)(a= I,?.), the condition for 
the functional (5.4) to be stationary results in the equations (the prime denotes the derivative 

with respect to 2,) 
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(7.5) 

Here ktZJj is the curvature of the cross-sectional contour. Equations (7.5) agree with 

the equations derived in /13/ by another method that applied the principle of additional 
energy directly to the three-dimensional theory of equilibrium of prestressed bodies. 

The domain of applicability of this theory for the buckling of thin-walled rods is 
studied in /14/ in the example of a rod with circular section by making a comparison with the 
exact solution of the stability problem for a hollow circular cylinder in a three-dimensional 
formulation. It is established in /14/ that Eq.(7.5) enables the critical load to be determined 
fairly exactly, corresponding to the rod instability mode occurring in long shells. This 
buckling mode is characterized by the fact that the functions '~a&) have two sign changes 
on the cross-sectional contour. Equations (7.5) are usedin/14/ to calculate the critical 
laod of a rod with a complex cross-sectional profile. 
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THE EXISTENCE OF AN OPTIMAL SOLUTION IN PROBLEMS 
OF DETERMINING THE SHAPE OF AN ELASTIC LINE* 

E.A. NIKOLAEVA and L.V. PETUKHOV 

The existence of an optimal solution in the problem of strain energy 
minimization of maximization for an elastic rod is investigated. It is 
established that for any elastic line shape a unique solution exists in 
Timoshenko's theory for the boundary conditions under consideration, while 
there is a case in Kirchoff's theory for an inextensible rod when the 
solution is not unique. A generalized optimal control exists in the 
optimization problem. The case when a measurable optimal control exists 
is investigated. Examples of the generalized control are presented. 

1. Let two points 0 and rI be fixed in R3. Connected them by an elastic line of given 
length 1, so that the elastic strain energy is extremal. For this problem the load can be 
considered to be both distributed p(r), m(r) ( vectors of the forces and moments), and lumped 
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